14 research outputs found

    Can current reanalyses accurately portray changes in Southern Annular Mode structure prior to 1979?

    Get PDF
    Early reanalyses are less than optimal for investigating the regional effects of ozone depletion on Southern Hemisphere (SH) high-latitude climate because the availability of satellite sounder data from 1979 significantly improved their accuracy in data sparse regions, leading to a coincident inhomogeneity. To determine whether current reanalyses are better at SH high-latitudes in the pre-satellite era, here we examine the capabilities of the European Centre for Medium-range Weather Forecasts (ECMWF) fifth generation reanalysis (ERA5), the Twentieth Century Reanalysis version 3 (20CRv3), and the Japanese Meteorological Agency (JMA) 55-year reanalysis (JRA-55) to reproduce and help explain the pronounced change in the relationship between the Southern Annular Mode (SAM) and Antarctic near-surface air temperatures (SAT) between 1950 and 1979 (EARLY period) and 1980–2020 (LATE period). We find that ERA5 best reproduces Antarctic SAT in the EARLY period and is also the most homogeneous reanalysis across the EARLY and LATE periods. ERA5 and 20CRv3 provide a good representation of SAM in both periods with JRA-55 only similarly skilful in the LATE period. Nevertheless, all three reanalyses show the marked change in Antarctic SAM-SAT relationships between the two periods. In particular, ERA5 and 20CRv3 demonstrate the observed switch in the sign of the SAM-SAT relationship in the Antarctic Peninsula: analysis of changes in SAM structure and associated meridional wind anomalies reveal that in these reanalyses positive SAM is linked to cold southerly winds during the EARLY period and warm northerly winds in the LATE period, thus providing a simple explanation for the regional SAM-SAT relationship reversal

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    The extraordinary March 2022 East Antarctica “heat” wave. Part II: impacts on the Antarctic ice sheet

    No full text
    Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) which caused these record-shattering temperature anomalies. Here in Part II, we continue our large, collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt which was recorded along coastal areas, but this was outweighed by widespread, high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Finally, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea-ice extent

    The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers

    No full text
    Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of -9.4° C on March 18 at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/mid-latitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heatwave’s meteorological drivers, impacts, and historical climate context. Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heatwave, an area of 3.3 million km2 in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about one hundred years, a closer recurrence of such an event is possible under future climate projections. In a subsequent manuscript, we describe the various impacts this extreme event had on the East Antarctic cryosphere

    Dynamics of the Earth's particle radiation environment

    No full text
    The physical processes affecting the dynamics of the Earth's particle radiation environment are reviewed along with scientific and engineering models developed for its description. The emphasis is on models that are either operational engineering models or models presently under development for this purpose. Three components of the radiation environment, i.e., galactic cosmic rays (GCRs), solar energetic particles (SEPs) and trapped radiation, are considered separately. In the case of SEP models, we make a distinction between statistical flux/fluence models and those aimed at forecasting events. Models of the effects of particle radiation on the atmosphere are also reviewed. Further, we summarize the main features of the models and discuss the main outstanding issues concerning the models and their possible use in operational space weather forecasting. We emphasize the need for continuing the development of physics-based models of the Earth's particle radiation environment, and their validation with observational data, until the models are ready to be used for nowcasting and/or forecasting the dynamics of the environment
    corecore